

¹Caring Cross, Gaithersburg, MD, United States, ²Albert Einstein College of Medicine, Bronx, NY, United States, ³Lentigen, Gaithersburg, MD, United States, ¹ ⁴University Hospitals Cleveland Medical Center, Cleveland, OH, United States, ⁵University of Pittsburgh, PA, United States, ⁶University of California San Francisco, San Francisco, CA, United States

the peripheral blood to the site of HIV infection in the spleen infection.

To test our hypothesis, we developed a GMP-complaint CAR-T cell manufacturing process using the CliniMACS clinical scale. Clinical-grade anti-HIV duoCAR-T cells (2 x 10⁶ total T cells) were intravenously injected into the tailveins of PBMC-humanized NSG mice with intrasplenic HIV infection (hu-spl-PBMC-NSG). After 17-18 days of HIV infection, humanized mice were evaluated for signs of CARrelated toxicity and HIV infection quantified in the spleens of infected mice treated with and without duoCAR-T cell therapy.

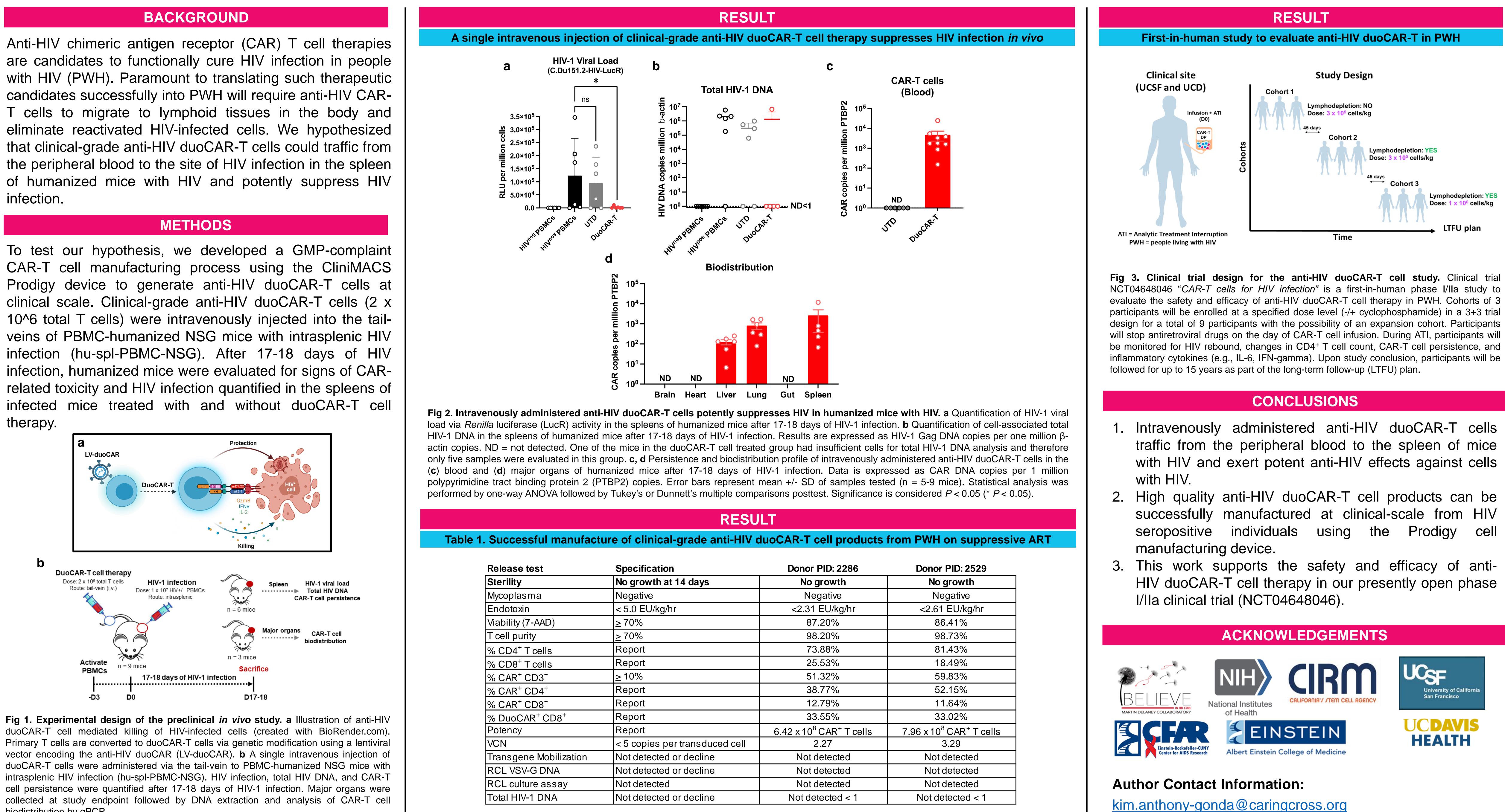


Fig 1. Experimental design of the preclinical in vivo study. a Illustration of anti-HIV duoCAR-T cell mediated killing of HIV-infected cells (created with BioRender.com). Primary T cells are converted to duoCAR-T cells via genetic modification using a lentiviral vector encoding the anti-HIV duoCAR (LV-duoCAR). b A single intravenous injection of duoCAR-T cells were administered via the tail-vein to PBMC-humanized NSG mice with intrasplenic HIV infection (hu-spl-PBMC-NSG). HIV infection, total HIV DNA, and CAR-T cell persistence were quantified after 17-18 days of HIV-1 infection. Major organs were collected at study endpoint followed by DNA extraction and analysis of CAR-T cell biodistribution by qPCR.

PRECLINICAL STUDIES TOWARD A PHASE I/IIA TRIAL USING ANTI-HIV DUOCAR-T CELL THERAPY

Kim Anthony-Gonda¹, Alex Ray², Yuge Wang³, Hang Su², Ariele Block², Danica Lee², Sarah Kleinsorge-Block⁴, Jane Reese⁴, Marcos de Lima⁴, Dimiter S. Dimitrov⁵, Rimas Orentas¹, Steven G. Deeks⁶, Harris Goldstein², Boro Dropulić¹

Donor PID: 2286	Donor PID: 2529
No growth	No growth
Negative	Negative
<2.31 EU/kg/hr	<2.61 EU/kg/hr
87.20%	86.41%
98.20%	98.73%
73.88%	81.43%
25.53%	18.49%
51.32%	59.83%
38.77%	52.15%
12.79%	11.64%
33.55%	33.02%
$6.42 \times 10^8 \text{ CAR}^+ \text{ T cells}$	$7.96 \times 10^8 CAR^+ T cells$
2.27	3.29
Not detected	Not detected
Not detected	Not detected
Not detected	Not detected
Not detected < 1	Not detected < 1

00278